
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 36: 351–371 (DOI: 10.1002/fld.138)

Advection upwinding splitting method to solve a
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SUMMARY

In this study, the advection upwinding splitting method (AUSM) is modified for the resolution of
two-phase mixtures with interfaces. The compressible two-fluid model proposed by Saurel and Abgrall is
chosen as the model equations. Dense and dilute phases are described in terms of the volume fraction and
equations of state to represent multi-phase mixtures. Test cases involving an air–water shock tube, water
faucet, and dilute particulate turbulent flows through a 90° bend are used to verify the current work. It
is shown that the AUSM based on flux differences (AUSMD) contains the mechanism to correctly
capture the contact discontinuity and interfaces between phases. In addition, a successful application to
dilute particulate turbulence flows by the AUSMD is demonstrated. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Currently, understanding compressible multi-phase flow phenomena by means of computa-
tional methodology is required in the safety analysis of chemical reactor utilities and engine
combustion processes. As noted by Saurel and Abgrall [1,2], a compressible multi-phase flow
is always regarded as a carrier phase containing a lot of individual particles, droplets, or
bubbles, with interfaces in each control volume. Among phases, there are different physical
or thermodynamic properties which are separated by interfaces. One common way of solving
compressible multi-phase flow problems is usually based on the so-called two-fluid model,
which considers the carrier phase and the disperse phase as interpenetrating continua coexist-
ing at every point in space. In the two-fluid model, each phase is separately described
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in terms of two sets of conservation equations, whereas the exchange of momentum and energy
takes place across the interfaces. Therefore, an accurate resolution of flow physics near
interfaces is essential to solve the compressible two-fluid model. Over the past years, the
development to solve the two-fluid model has achieved a lot of progress by means of
convection schemes [3–7] or Riemann solvers [8–11]. However, conservative Euler solvers
have been found to produce numerical oscillations near interfaces. As explained in References
[12–14], the averaging procedure in the conservative formulation causing numerical mixing
often fails to maintain pressure equilibrium among fluid composition across material inter-
faces. It has also been found that updating the pressure field via the equation of state often
generates erroneous pressure fluctuations at material interfaces, which subsequently contami-
nate the solution of other flow variables. In order to overcome numerical difficulties from the
multi-fluid calculations, great efforts have been geared toward many directions. To our
knowledge, Abgrall [15] uses a quasi-conservative formulation of the equations to ensure a
consistent approximation of the energy equation near the interfaces, where regions of different
fluid components are separated. Abgrall solves an additional transport equation for 1/(�−1)
to update � with other conservative equations based on the Roe approximated Riemann solver
for mixtures of two perfect gases. To remove conservation errors around material fronts, Jenny
et al. [14] modified the total energy per unit time in conservative Euler solvers to avoid the
occurrence of the pressure errors generated near the interfaces. However, it is unclear how to
extend the correction to deal with the real gas flows. Another approach introduced by Karni
[13] is to solve the problem by employing a non-conservative primitive Euler formulation,
which uses a small viscous perturbation technique to remove leading-order conservation errors.
Also, Karni [16] solved multi-component fluids augmented by the pressure evolution equation
derived from the energy equation that exhibits oscillation-free interfaces. This method is not
exactly conservative at the interface; however, negligible relative conservation errors only in
the total energy are obtained for the very strong shocks. Subsequently, Shyue [17] extended the
work of Abgrall [12,15] from polytropic gases in one dimension to a stiffened gas with the
so-called stiffened gas equation of state to approximate materials, including compressible
liquids and solids. The system of equations is solved by using a high-resolution wave
propagation method [18]. Shyue modified the Roe-type Riemann solver by assuming velocity
and pressure equilibrium in each grid cell. It shows that monotone profiles of flow solutions
near material front and pressure equilibrium are achieved. However, the reconstruction of the
numerical flux is expressed in a sophisticated way. The derivation of the eigensystem requires
tedious work for solving multi-dimensional complicated multi-flow problems. In our previous
work [19], the two-phase model derived by Shyue [17] is modified in a conservation form and
solved by the advection upwinding splitting method (AUSM) based on flux difference
(AUSMD) [20,21]. Numerical results show that the AUSMD not only enhances pressure
equilibrium across the interface but also keeps pressure continuous across the contact
discontinuity between phases.

To continue this effort, the AUSMD is applied to solve a seven-equation compressible
two-fluid model suggested by Saurel and Abgrall [1] here. In this model, a multi-phase flow is
assumed as a multi-fluid flow with an extremely large number of interfaces, described by
means of a non-conservative revolution equation of volume fraction. An accurate resolution of
interfaces is required. Saurel and Abgrall have developed a successful Harten, Lax and van
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Leer (HLL)-type Riemann solver to compute the model. However, the estimation of wave
speed in HLL Riemann solver leaves many choices. In this study, the idea of the AUSMD [20]
is introduced to solve the two-fluid model of Saurel and Abgrall in a simpler form. A
non-conservative approach based on AUSM-type formulations is suggested to simulate the
evolution of volume fraction to avoid numerical oscillations near material interfaces. In
addition to solving the convective terms for the dense phase, a modification of the AUSM is
also applied to compute the equations for the dilute phase. Besides, some compressible
multi-phase flows are usually in the low-Mach number flow limit. Numerical convergence
difficulties caused by wide disparities in eigenvalues are widely encountered in the calculations.
Therefore, in this study the AUSMD incorporated with the eigenvalue rescaled techniques by
Edwards and Liou [22] is chosen to circumvent the convergence difficulties for the low-speed
multi-phase flow problems. In addition, the predictor–corrector approach suggested by Saurel
and Abgrall [1] is used to discretize numerical time accuracy. Meanwhile, high-order spatial
accuracy is obtained through the monotone upstream-centered scheme for the conservation
laws (MUSCL) method with limiter functions [23]. In numerical verifications, an air– liquid
shock tube [17], water faucet [24], and a dilute particulate turbulent flow through a 90° bend
[25,26] are chosen. Grid refinement is also performed.

2. GOVERNING EQUATIONS

The two-fluid modeling strategy considers each phase separately in terms of an independent set
of momentum, mass, and energy equations. The interactions between the two phases are
described by the coupling of volume fraction and transfer terms of mass, momentum, and
energy of each phase. This study solves a multi-dimensional, seven-equation, two-fluid model
transport equations, which are proposed by Saurel and Abgrall [1]. It involves six equations
obtained from conservation laws for carrier phase and disperse phase, and completed by a
seventh equation for the revolution of the volume fraction as the followings:

Volume fraction equation

�

�t
(�g)+ (VI)

�

�xk

(�g)=0 (1a)

Mass conser�ation

�

�t
(�g�g)+

�

�xk

(�g�gug,k)=M� ,
�

�t
(�p�p)+

�

�xk

(�p�pup,k)= −M� (1b)

Momentum conser�ation

�

�t
(�g�gug,k)+

�

�xk

(�g�gug,kug, j+�gPg)=PI

��g

�xk

+M� VI+Fd
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�

�t
(�p�pup,k)+

�

�xk

(�p�pup,kup, j+�pPp)= −PI

��g

�xk

−M� VI−Fd (1c)

Energy conser�ation

�

�t
(�g�gEg,k)+

�

�xk

ug,k(�g�gEg+�gPg)=PIVI

��g

�x
+M� Ei+FdVI+Qi

�

�t
(�g�gEp,k)+

�

�xk

up,k(�p�pEp+�gPp)= −PIVI

��g

�x
−M� Ei−FdVI−Qi (1d)

Energy compatibility

�p+�g=1 (1e)

In the above equations, � stands for the phase volume fraction and �, u, and E are density,
velocity, and total energy for each phase respectively. The total energy Ek=ek+1

2uk, where e
is denotes the internal energy. The subscripts ‘g’ and ‘p’ represent the carrier phase and
disperse phase respectively. The interfacial variables have the subscript ‘I’. The transfer terms
of the right-hand sides of the same equations are mass transfer M� , drag force Fd, convective
heat transfer Qi, and the non-conservative terms

PI

��g

�xk

and PIVI

��g

�x

The above equations can be supplemented by two equations of state: pk=pk(�k, ek).The
pressure PI and the velocity VI represent the averaged values of the interfacial area over the
two-phase control volume. The mean interfacial pressure defined in Reference [1] is considered
equal to the mixture pressure, namely

PI=�pPp+�gPg (2)

and the mean interfacial velocity is assumed to correspond to the center of the mass velocity,
like

VI=
�p�pu+�g�gug

�p�p+�g�g

(3)

with the mixture density as

�=�p�p+�g�g (4)
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2.1. Dilute particulate turbulence models

In this paper, using the AUSMD to solve dilute particulate flow problems by means of the
two-fluid model strategy is also discussed. Under the conditions of moderate or low pressures
[1], compressibility effects of the particulate phase can be neglected. Following dilute particu-
late phase assumptions discussed in References [6,7] a dilute particulate turbulence flow model
based on the renormalization group theory (RNG) proposed by Tu and Fletcher can be
obtained as

�

�t
(�g�gug,k)+

�

�xk

(�g�gug,kug, j)

= −
�(�gP)

�xk

+
�

�xk

�
�g�g�gl

�

�xj

ug,k
�

−
�

�xk

(�g�gug,kug, j)−FD,k (5)

�

�t
(�p�pup,k)+

�

�xk

(�p�pup,kup, j)= −
�(�pP)

�xk

+
�

�xk

�
�p�p�pl

�

�xj

up,k
�

−
�

�xk

(�p�pup,kup, j)−FD,k+�p�DGk (6)

where the source terms FD due to the slip velocity of the two phases is defined by

FD,k=
�pf(ug,k−up,k)

tp

(7)

and the particle response time tp is

tp=
�sdp

2

18�g�gl

(8)

where �s the material density of particles and the correction factor f is defined by

f=

�
�
�
�
�

1+0.15Rep
0.687 0�Rep�200

0.914Rep
0.282+0.0135Rep 200�Rep�2500

0.0167Rep 2500�Rep

(9)

with the particulate Reynolds number

ReP=
�ug,k−up,k �dp

�g

(10)

and dp is the diameter of the particle. The second-order correlation terms for the particle phase
using a gradient hypothesis [6] are
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−�p�pu �pu �p, j=�p�p�p
��up,i

�xj

+
�up, j

�xi

�
(11)

Besides, a RNG based k–� turbulence model suggested by Yakhot and Orszag [27] and
modified by Tu and Fletcher [6,7] is employed. The kinetic energy of the turbulence k and its
dissipation rate � are governed by separate transport equations, such as

�

�t
(�p�gk)+

�

�xk

(�p�gug,kk)=
�

�xk

�
�p�g�gt

�k
�xk

�
+P−�p�g�+Sk

�

�t
(�p�g�)+

�

�xk

(�p�gug,k�)=
�

�xk

�
�g�g�gt

��

�xk

�
+

�

k
(C1P−C2�p�g�)−�gR+S� (12)

In the RNG turbulence transport equation, an inverse Prandtl number � is introduced and
can be obtained from the following equation:

� �−1.3929
�0−1.3929

�0.6321� �+2.3929
�0+2.3929

�0.3679

=
�gl

�eff

(13)

where �0=1 and �gl is the laminar viscosity of the gas phase and the turbulent viscosity
�gt=�eff−�gl and the effective viscosity is given by

�eff=�l
�

1+
�Cu

�l

k

��

n2

(14)

The extra source terms in Equation (12) contain the interaction between the particles and the
gas phase for when the turbulence modulation of both phases is considered. The production of
turbulent energy is based on Boussinesq’s approximation, and is expressed as

P= −�u�i u�j
�ui

�xj

=
�

�gt
��uj

�xi

+
�ui

�xj

−
2
3

(� ·Vb )�ij
�

−
2
3

�k�ij
n �ui

�xj

(15)

and the rate of strain term R is given as

R=
Cu�

3(1−�/�0)
1+	�3

�2

k
(16)

where Cu=0.09, C1=1.42, C2=1.68, �=
k/�, �0=4.38, 	=0.012, 
=�2SijSij, and

Sij=
1
2
��ui

�xj

+
�uj

�xi

�
Also the effects of particles on the gas turbulence formation [7] are modeled by
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Sk= −2k
�p

tp

�
1−exp

�
−Bk

tp

tL

�n
(17)

and

S�= −2�
�p

tp

�
1−exp

�
−B�

tp

tL

�n
(18)

where the particle response time is found in Equation (8); �p is the bulk density of the particle
phase, BK=0.09, B�=0.4, and tL=k/�.

3. NUMERICAL METHOD

The system of equations (1a)– (1e) has been shown to be a strictly hyperbolic model in
previous works. This allows us to apply existing hyperbolic solvers as approximate Riemann
solvers or as a flux vector splitting method, which have successfully solved the single-phase
problems, to simulate the current two-phase model. First, the system equations can be written
in a compact form

��

�t
+VI

��

�x
=0 (19)

�U
�t

+
�F
�x

=H(U)
��g

�x
(20)

where U= (�k�k, �k�kuk, �k�kEk), F= [�k�kuk, �k�kuk
2+�kPk, uk(�k�kEk+�kPk)], and H=

(0, pI+pI�I). It involves non-conservative terms coupling with six-equation conservation
equations and a non-conservative evolution equation of void fraction. Numerical solutions of
the system of equations (1a)– (1e) are evolved by a succession of operators [1] with a constant
time step, as

Ui
n+1=L s

�tLh
�tUi

n (21)

where Lh
�t denotes the hyperbolic operator as

Ui
n+1=Ui

n−
�t
�x

(Fi+1/2
n −Fi−1/2

n )+�tH(Ui
n)

� i+1
n −� i−1

n

2�x
(22)

and L s
�t denotes the integration operator for source and relaxation terms seen in Reference

[28]. The interface numerical flux, Fj+1/2=Fj+1/2,R+Fj+1/2,L, can be accomplished by the
AUSMD. By means of the MUSCL method with a minmod limiter [23], the fluxes FR=F(UR)
and FL=F(UL) are computed using the reconstructed solution vectors UR and UL on the right-
and left-hand sides of the cell face respectively. The set of eigenvalues of the governing
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equations can be obtained from the matrix A, where A=�F/�U is evaluated using a
symmetric average between UR and UL. The eigenvalues of the system matrix are given in
Reference [1]. In the above equations, �t is chosen as the local pseudo-time step, which is
determined by the largest eigenvalue of the system of governing equations for each grid
cell.

As usual, some two-phase flow phenomena are in the incompressible regime in which the
particle and interfacial pressure may equal the gas pressure. This could leave an ill-posed
mathematical model, which may require large numerical viscosity effects to achieve numeri-
cal stability. In order to avoid an ill-posed, two-fluid model, Saurel and Abgrall [1] consid-
ered both phases as compressible, which enables the system of equations to be well posed
in terms of building artificial equations of state to model the flow of particulate phase.
However, when the particulate phase is considered compressible, convergence difficulties
may be encountered in the calculations while the particle phase is in the low Mach number
limit. Therefore, we suggest that the AUSMD [20] is reformulated by the sound speed
rescaled technique by Edwards and Liou [22] to operate effectively for the low-Mach
number flow problems. The description of the AUSMD and the related rescaled scheme for
the discretization of volume fraction equations and the convective flux of the dense and
dilute phases are given in the following section, namely

3.1. Numerical flux

Dense phase
The flux formulas of the AUSMD have been demonstrated to be robust and low dissi-

pated for the low-speed gas flow problem in Reference [21]. Here it is illustrated along one
of the co-ordinate lines as the followings:

Let us begin by defining a common (interface) speed of sound

a1/2=
1
2

(aR+aL) (23)

where subscripts ‘L’ and ‘R’ denote the ‘left’ and ‘right’ states with respect to the interface.
In order to operate effectively in the low Mach number flow field, the AUSMD is

reformulated by the rescaled technique as

ā= f1/2a1/2 (24)

where

f1/2=
�(1−M�

2 )2M1/2
2 +4M�

2

(1+M�
2 )

(25)

the ‘left’ and ‘right’ Mach numbers are then redefined by the ‘preconditioned’ speed of
sound as
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ML=
uL

ā1/2

; MR=
uR

ā1/2

(26)

However, the interface flux of the AUSMD scheme is still same as

F1/2=
1
2

ā1/2(�M)1/2[�L+�R]−
1
2

�(�M)1/2��1/2�+P1/2 (27)

where �1/2( · )= ( · )R− ( · )L, �= [�, �u, ��, �H, �k, �� ], and P= [0, P, 0, 0, 0, 0], where the
interface mass flux is also written as

(�M)1/2=�LML
+ +�RMR

− (28)

Here (ML
+, MR

−) are defined as

ML
+ =�L

�(M+1)2

4
−

M+ �M �
2

�
L

+
ML+ �ML�

2
(29)

and

MR
− =�R

�
−

(M−1)2

4
−

M− �M �
2

�
R

+
MR− �MR�

2
(30)

where the parameter � is determined such that the numerical dissipation for the contact
discontinuity vanishes and keeping the pressure equilibrium across material interface and can
have several choices. In this paper, a weighting function based only on the ratio of pressure to
density is defined as

�L=
2(p/�)L

(p/�)L+ (P/�)R

, �R=
2(p/�)R

(p/�)L+ (p/�)R

(31)

to be a specific condition for pressure being continuous across the contact discontinuities.
The numerical flux AUSMD associated with the above velocity splitting automatically

results in a vanished mass flux

(�M)1/2=0 (32)

thus avoiding excessive numerical dissipation while solving a stationary contact discontinuity,
where Mj=Mj+1=0 and pj=pj+1. Also, the common speed of sound in the velocity and
pressure splitting enables numerical fluxes to reproduce the exact Riemann solution of the
contact discontinuities. This is the reason why the current numerical scheme allows exact
capturing of stationary discontinuities in the single component problem [20]. Here we
investigate its accuracy in solving multi-phase flow problems. We get the following
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Volume Fraction Equation
Based on the upwinding interpolation delivered by AUSM scheme, the volume fraction
equation (1a) can be evaluated by

� i
n+1=ui

n−� [hi+1/2
n −hi−1/2

n ] (33)

hi+1/2=
1
2

[aI,i+1/2Mi+1/2(�L+�R)−aI,i+1/2�Mi+1/2�(�R−�L)] (34)

where aI,i+1/2 is the sound of speed at the cell interface and Mi+1/2 is the mixture Mach
number for each phase at the cell interface. �=�t/�x, �L and �R can be obtained by a
third-order accurate MUSCL extrapolated with a minmod limiter.

Dilute Particulate Phase
For the dilute particle phase, the volume fraction of the particulate phase is assumed very
small as �p�1. Thus, the volume fraction of the gas phase is regarded as �g�1. In this study,
the mass of particles per unit volume of mixture, �p=�p�s, where �s is the particle material
density. In addition, the particulate pressure term for the dilute two-phase flow case is
neglected. The system equations for dilute particulate flows can be simplified as the works of
Tu [6,7]. Without the pressure term, the velocity splitting of the AUSMD and its interface
numerical flux are simply modified as

F1/2=up,1/2
+ �L+up,1/2

− �R=
1
2

ap,1/2Mp,1/2(�L−�R)−
1
2

ap,1/2�Mp,1/2�(�R−�L) (35)

where Mp,1/2 is the interface particle velocity defined as

(Mp)1/2=Mp,L
+ +Mp,R

− (36)

with

Mp
� =

1
2

(Mp� �Mp�)

and �= [�p, �pup, �p�p, ep].

4. BOUNDARY CONDITIONS

At the inlet or exit of the computational domain, the subsonic characteristic boundary
conditions are specified for �, u, P, e, k, � for both phases. The no-slip boundary condition is
used for the velocities on the solid surface. The specification of k at the closest-wall nodes is
accomplished by assuming local equilibrium of the flow in the wall region. Also, � at the
nearest-wall nodes are determined by the turbulence length scale and vary linearly with
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distance from the wall [25]. For the particular phase, the slip flow condition is assumed for the
solid boundary conditions as

(up)wall=�m
�2

3
(k+kp)−2k

� TL

�m+TL

�n1/2��up

�n
�

wall

(37)

where

kp�k
TL

�m+TL

(38)

with

�m=
�pdp

2

18� eff (39)

and

Figure 1. Numerical solutions of a two-phase gas– liquid shock tube based on (a) 100 and (b) 200 cells.
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Figure 1 (Continued)

TL=CT

k
�

(40)

where cT=0.41.

5. RESULTS AND DISCUSSION

5.1. Air– liquid shock tube

Following the work of Shyue [17], a two-phase gas– liquid Sod’s problem, involving gas and
liquid phases separated by an interface, is solved. The numerical capability of the AUSMD
scheme on the resolution of material interfaces is investigated. This is a simplification of the
underwater explosion problem in a spherically symmetric geometry. We consider a shock tube
filled on its left part with high-pressure gas and on its right part with low-pressure liquid,
under different ratios of specific heat. Also, the stiffened gas equation of state is used to
describe the liquid phase. This belongs to an interface problem that the solution of a Riemann
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problem consists of a single contact discontinuity in gas dynamics [17]. Numerical solution is
obtained by which the liquid flow is governed by a stiffened equation of state [1,17]

P= (�−1)�e−� (41)

We have a stiffened gas and use two constant states as

�
�
�
�
�
�
�

�

u

p

�

p�

�
�
�
�
�
�
�L

=

�
�
�
�
�
�
�

1.241

0

2.753

1.4

0

�
�
�
�
�
�
�

and

�
�
�
�
�
�
�

�

u

p

�

p�

�
�
�
�
�
�
�R

=

�
�
�
�
�
�
�

0.991

0

3.056×10−4

5.5

1.505

�
�
�
�
�
�
�

(42)

Here L is the state used for x� [0, 0.5) and R is the state used for x� [0.5, 1].
The solution is plotted at time 0.1. Mixture pressure, mixture density, velocities, and gas

void fraction contain exact solutions, which are represented by solid lines in Figure 1(a) and
(b). The computed solutions are performed on constant spacing meshes of 100 cells and 200
cells. The MUSCL extrapolation with a minmod limiter is utilized. A Courant–Friedrich–

Figure 2. The volume fraction profile of the water faucet at t=0.4.
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Figure 3. Computation domain of a three-dimensional 90° bend on 120×31×31 grid (sketched from Tu
and Fletcher [6]).

Figure 4. Gas flow pressure distribution of a 90° bend.
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Lewy (CFL) number of 0.5 is chosen to keep numerical stability. The comparisons show that
the agreement between exact solutions and computed results is satisfactory. Numerical
oscillation around the contact discontinuity is removed regardless if the grid cell is coarse or
fine. Also, the computed void fraction is shown to be non-oscillatory. It is noted that the
AUSMD contains the mechanism exactly to capture of the contact discontinuity without
excessive numerical dissipation, and keeps the pressure continuous across material interfaces
based on a weighting function of the ratio of pressure to density. Besides the correct behaviors
of shock waves, rarefaction and void fraction are also seen in the computed results.

Figure 5. Gas velocity vector profile of a 90° bend.

Figure 6. Particulate concentration plot of a 90° bend.
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Figure 7. The streamtrace plot at cross-sections along the bend.

5.2. Water faucet

The water ‘faucet’ problem tested in Reference [24] consists of a liquid stream with a fixed
inflow rate of water at a velocity of 10.0 m s−1, a temperature of 50°C, and a liquid volume
fraction of 0.8 entering a vertical tube 12 m in length and 1.0 m in diameter from the top. Due
to the action of gravity, the water falls to form a stream of uniformly decreasing cross-section.
The bottom of the tube is open to the ambient pressure. The objective of this problem is to test
numerical viscosity and stability on the resolution of void propagation.

To perform the calculations, a liquid volume fraction of 0.8 and a vapor volume fraction of
0.2 with a temperature of 50°C, a pressure of 1.0E05 Pa are used for the initial conditions.
Water convects with a uniform velocity of 10.0 m s−1 surrounded by stagnant vapor. The
boundary conditions at the inlet to the top of the tube are constant fluid thermodynamic
conditions and constant liquid inflow velocity. The liquid state is at 50°C and 1.0E05 Pa. The
vapor boundary conditions is arbitrary since the inflow rate is zero. The velocity boundary
conditions are 10.0 m s−1 for the liquid and 0.0 m s−1 for the vapor. The volume fraction for
the liquid at the inlet is constant at 0.8. The only outflow boundary condition at the bottom
of the tube is constant pressure at 1.0E05 Pa.

Mass effects, wall fraction, and interphase friction are not considered in this case. It is
assumed that the liquid–vapor interface is uniform and the phasic pressure is same at each
location. This transient problem has a particularly simple analytical solution [11] when
pressure variation in the vapor phase is ignored. The computations are performed using a
constant CFL number (0.5) on the cells of 500 and 1000 respectively. The MUSCL extrapola-
tion with a minmod limiter is utilized. The computed volume fraction of vapor at a time of 0.4
s compared with the analytic solutions is shown in Figure 2. It is seen that both meshes, with
500 cells and 1000 cells, capture the discontinuity of the void fraction, but smear out the peak
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value to some extent. However, to compare with the previous computations provided in
Reference [11] for the same case, current results are satisfactory.

5.3. 90° Bend

In the final test case, dilute solid–gas turbulent flows passing through a 90° bend are
investigated. A very dilute particle suspension in the radial, streamwise, and spanwise
directions is assumed as in Kliafas and Holt(s experiment [28]. Their experimental data are
chosen to validate the current work. A dilute particulate turbulence flow model based on the
RNG theory proposed by Tu and Fletcher [6,7] is used here. The flow conditions used in the

Figure 8. Gas phase velocity profile at (a) �=0°, (b) �=15°, and (c) �=30° station of the bend.
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Figure 9. Particulate phase velocity profile at (a) �=0°, (b) �=15°, and (c) �=30° station of the bend.

computations [6] for the comparison with the experiment are Ub=52.19 m s−1, corresponding
to the Reynolds number 3.47×105, the inlet turbulence intensity of the gas phase at 1 per cent,
the particle diameter size 50 �m, the particle material density �s=2990 kg m−3, the inlet
particulate bulk density �p=1.8×10−4 kg m−3. In this study, 120×31×31 grids shown in
Figure 3 are generated for the computations.

Figures 4 and 5 shows numerical predictions of gas flow through a 90° bend in terms of
pressure contour and velocity vector distributions. The maximum values of gas velocity
profiles are found to displace toward the inner wall, as a result of favorable streamwise
pressure gradients present. It is also found that there is deceleration of the flow near the outer
wall due to adverse pressure gradients near the inner wall. Figure 6 shows particulate
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concentrations in the same plane. Here we can find that particles following the gas flow into
the bend entrance and then, due to their own inertia, collide with the outer wall directly. Along
the turning section of the bend, a much higher particle concentration appears near the outer
wall than near the inner wall. It is also seen from Figure 6 that very few particles are found
in the region near the inner wall of the bend. A particle-free region is simulated close to the
inner wall. The thickness of this particle-free region gradually increases toward downstream. It
can be noted that particle–wall collision is significant in the flow region near the outer wall.
Only the outer wall is impacted by particles and the inner wall is generally free of erosion. This
is consistent with the observation by Kliafas and Holt and the results computed by Tu and
Fletcher. Figure 7 depicts the stream trace plot of the gas phase at transverse planes along the

Figure 10. Streamwise turbulence intensity profile at (a) �=0°, (b) �=15°, and (c) �=30° station of the
bend.
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bend. It is shown that a pair of flow vortex appears at each cross-section of the turning tube.
A strong secondary effect is captured in the calculations.

Next, mean streamwise gas velocity profiles at the �=0°, 15°, and 30° stations are computed
and compared with measured data as shown in Figure 8(a)– (c). In Figure 9(a)– (c), the particle
velocity profile distributions compared with validated data are demonstrated. The results
computed on coarse and fine grids are also shown. From Figures 8 and 9, it is observed that
the large negative slip velocity between the gas and particulate flow appears near the outer
wall. The maximum values of gas velocity profiles are displaced toward the inner wall, as a
result of favorable streamwise pressure gradients present there. However, the gas pressure does
not affect the distributions of particulate velocity. A relatively uniform particle velocity profile
at all stations is obtained. It can be seen from these figures that the fine grid has yielded almost
identical solutions with Kliafas and Holt(s measurements.

The predictions of streamwise turbulence intensity for location �=0°, 15°, and 30° by an
RNG-based k–� turbulence model, compared with the measurements, are presented in Figure
10(a)– (c). The high turbulence intensity near the two side walls is observed. It is shown that
the predictions on the fine grid agree with experimental data very well. The current RNG-
based k–� turbulence model demonstrates very good accuracy.

6. CONCLUSIONS

In this study a seven-equation compressible two-fluid model containing a non-conservative
evolution equation of volume fraction and six conservation equations is expressed in the
hyperbolic form. The AUSMD is modified to discretize the volume fraction equation and the
convection equations for the dense and dilute phases. Test cases involving an air–water shock
tube, water faucet, and dilute particulate turbulent flows through a 90° bend are used to verify
the computations. It is shown that the AUSMD contains the mechanism to correctly capture
the contact discontinuity and interfaces between phases without excessive numerical dissipa-
tion. Besides, the RNG-based k–� model containing particle–wall collision terms achieve
accurate prediction of wall quantities for both gas and particle phases. Numerical results reveal
that the AUSMD has demonstrated simplicity and accuracy in solving the compressible
two-fluid model and achieved successful applications to dilute particulate turbulence flow
problems.
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